


2 Source Coding

In this chapter, we look at the “source encoder” part of the system. This
part removes redundancy from the message stream or sequence. We will
focus only on binary source coding.

2.1. The material in this chapter is based on [C & T Ch 2, 4, and 5].

2.1 General Concepts

Example 2.2. Suppose your message is a paragraph of (written natural)
text in English.

• Approximately 100 possibilities for characters/symbols.

◦ For example, a character-encoding scheme called ASCII (Amer-
ican Standard Code for Information Interchange) originally1 had
128 specified characters – the numbers 0–9, the letters a–z and
A–Z, some basic punctuation symbols2, and a blank space.

• Do we need 7 bits per characters?

2.3. A sentence of English–or of any other language–always has more infor-
mation than you need to decipher it. The meaning of a message can remain
unchanged even though parts of it are removed.

Example 2.4.

• “J-st tr- t- r–d th-s s-nt-nc-.” 3

• “Thanks to the redundancy of language, yxx cxn xndxrstxnd whxt x
xm wrxtxng xvxn xf x rxplxcx xll thx vxwxls wxth xn ’x’ (t gts lttl
hrdr f y dn’t vn kn whr th vwls r).” 4

1Being American, it didn’t originally support accented letters, nor any currency symbols other than the
dollar. More advanced Unicode system was established in 1991.

2There are also some control codes that originated with Teletype machines. In fact, among the 128
characters, 33 are non-printing control characters (many now obsolete) that affect how text and space are
processed and 95 printable characters, including the space.

3Charles Seife, Decoding the Universe. Penguin, 2007
4Steven Pinker, The Language Instinct: How the Mind Creates Language. William Morrow, 1994
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2.5. It is estimated that we may only need about 1 bits per character in
English text.

Definition 2.6. Discrete Memoryless Sources (DMS): Let us be more
specific about the information source.

• The message that the information source produces can be represented
by a vector of characters X1, X2, . . . , Xn.

◦ A perpetual message source would produce a never-ending sequence
of characters X1, X2, . . ..

• These Xk’s are random variables (at least from the perspective of the
decoder; otherwise, these is no need for communication).

• For simplicity, we will assume our source to be discrete and memoryless.

◦ Assuming a discrete source means that the random variables are
all discrete; that is, they have supports which are countable.

∗ Recall that “countable” means “finite” or “countably infinite”.

∗ We will further assume that they all share the same support
and that the support is finite.

· This support is called the source alphabet.

· See Example 2.7 for some examples.

◦ Assuming a memoryless source means that there is no depen-
dency among the characters in the sequence.

∗ More specifically,

pX1,X2,...,Xn
(x1, x2, . . . , xn) = pX1

(x1)× pX2
(x2)× · · · × pXn

(xn).
(1)

∗ Practical sources would not be memoryless; there are some
amount of dependence (structure) among the characters. For
English text, this is demonstrated in Example 2.4.

· Simple DMS model provides a good starting point to study.

· We can take advantage of such dependency.
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∗ We will further assume that all of the random variables share
the same probability mass function (pmf)5. We denote this
shared pmf by pX(x).

In which case, (1) becomes

pX1,X2,...,Xn
(x1, x2, . . . , xn) = pX(x1)×pX(x2)×· · ·×pX(xn). (2)

· We will also assume that the pmf pX(x) is known. In prac-
tice, there is an extra step of estimating this pX(x).

· To save space, we may see the pmf pX(x) written simply as
p(x), i.e. without the subscript part.

∗ The shared support of X which is usually denoted by SX be-
comes the source alphabet. Note that we also often see the use
of X to denote the support of X.

• Summary: A DMS produces a sequence (symbol by symbol) of i.i.d.
RVs X1, X2, . . . all of which share the same pmf pX(x) whose support
is called the source alphabet.

• Because our simplified source code can be characterized by a random
variable X, we only need to specify its pmf pX(x).

Example 2.7. Examples of (finite) source alphabets

(a) Collection of 95 symbols for English text.

(b) Collection of 128 symbols for string of ASCII symbols.

(c) Collection of four symbols {Yes, No, OK, Thank You} for crude con-
versation with Farang.

(d) Collection of four symbols {A, B, C, D} for answers of multiple-choice
test.

5We often use the term “distribution” interchangably with pmf and pdf; that is, instead of saying “pmf
of X”, we may say “distribution of X”.
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Definition 2.8. An encoder c(·) is a function that maps each of the char-
acter in the source alphabet into a corresponding (binary) codeword.

• In particular, the codeword corresponding to a source character x is
denoted by c(x).

• Each codeword is constructed from a code alphabet.

◦ A binary codeword is constructed from a two-symbol alphabet,
wherein the two symbols are usually taken as 0 and 1.

◦ It is possible to consider non-binary codeword. Morse code dis-
cussed in Example 2.13 is one such example.

• Mathematically, we write

Encoder c : SX → {0, 1}∗

where

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .}

is the set of all finite-length binary strings.

• The length of the codeword associated with source character x is de-
noted by `(x).

◦ In fact, writing this as ` (c(x)) may be clearer because we can see
that the length depends on the choice of the encoder. However, we
shall follow the notation above6.

Example 2.9. c(red) = 00, c(blue) = 11 is a source code for SX =
{red, blue}.

6which is used by the standard textbooks in information theory.
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Example 2.10. Suppose the message is a sequence of basic English words
which happen according to the probabilities provided in the table below.

x p(x) Codeword c(x) `(x)

Yes 4%
No 3%
OK 90%

Thank You 3%

Definition 2.11. The expected length of a code c(·) for (a DMS source
which is characterized by) a random variable X with probability mass func-
tion pX(x) is given by

E [`(X)] =
∑
x∈SX

pX(x)`(x).

Example 2.12. Back to Example 2.10. Consider a new encoder:

x p(x) Codeword c(x) `(x)

Yes 4% 01
No 3% 001
OK 90% 1

Thank You 3% 0001

Observe the following:

• Data compression can be achieved by assigning short descriptions to
the most frequent outcomes of the data source, and necessarily longer
descriptions to the less frequent outcomes.

• When we calculate the expected length, we don’t really use the fact
that the source alphabet is the set {Yes,No,OK,Thank You}. We
would get the same answer if it is replaced by the set {1, 2, 3, 4}, or the
set {a, b, c, d}. All that matters is that the alphabet size is 4, and the
corresponding probabilities are {0.04, 0.03, 0.9, 0.03}.
Therefore, for brevity, we often find DMS source defined only by its
alphabet size and the list of probabilities.

Example 2.13. The Morse code is a reasonably efficient code for the En-
glish alphabet using an alphabet of four symbols: a dot, a dash, a letter
space, and a word space. [See Slides]
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• Short sequences represent frequent letters (e.g., a single dot represents
E) and long sequences represent infrequent letters (e.g., Q is represented
by “dash,dash,dot,dash”).

Example 2.14. Thought experiment: Let’s consider the following code

x p(x) Codeword c(x) `(x)

1 4% 0
2 3% 1
3 90% 0
4 3% 1

This code is bad because we have ambiguity at the decoder. When a
codeword “0” is received, we don’t know whether to decode it as the source
symbol “1” or the source symbol “3”. If we want to have lossless source
coding, this ambiguity is not allowed.

Definition 2.15. A code is nonsingular if every source symbol in the
source alphabet has different codeword.

As seen from Example 2.14, nonsingularity is an important concept.
However, it turns out that this property is not enough.

Example 2.16. Another thought experiment: Let’s consider the following
code

x p(x) Codeword c(x) `(x)

1 4% 01
2 3% 010
3 90% 0
4 3% 10

2.17. We usually wish to convey a sequence (string) of source symbols. So,
we will need to consider concatenation of codewords; that is, if our source
string is

X1, X2, X3, . . .

then the corresponding encoded string is

c(X1)c(X2)c(X3) · · · .

In such cases, to ensure decodability, we may
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(a) use fixed-length code (as in Example 2.10), or

(b) use variable-length code and

(i) add a special symbol (a “comma” or a “space”) between any two
codewords

or

(ii) use uniquely decodable codes.

Definition 2.18. A code is called uniquely decodable (UD) if any en-
coded string has only one possible source string producing it.

Example 2.19. The code used in Example 2.16 is not uniquely decodable
because source string “2”, source string “34”, and source string “13” share
the same code string “010”.

2.20. It may not be easy to check unique decodability of a code. (See
Example 2.28.) Also, even when a code is uniquely decodable, one may
have to look at the entire string to determine even the first symbol in the
corresponding source string. Therefore, we focus on a subset of uniquely
decodable codes called prefix code.

Definition 2.21. A code is called a prefix code if no codeword is a prefix7

of any other codeword.

• Equivalently, a code is called a prefix code if you can put all the
codewords into a binary tree where all of them are leaves.

• A more appropriate name would be “prefix-free” code.

• The codeword corresponding to a symbol is the string of labels on the
path from the root to the corresponding leaf.

Example 2.22.

x Codeword c(x)

1 10
2 110
3 0
4 111

7String s1 is a prefix of string s2 if there exist a string s3, possibly empty, such that s2 = s1s3.
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Example 2.23. The code used in Example 2.12 is a prefix code.

x Codeword c(x)

1 01
2 001
3 1
4 0001

2.24. Any prefix code is uniquely decodable.

• The end of a codeword is immediately recognizable.

• Each source symbol can be decoded as soon as we come to the end of
the codeword corresponding to it. In particular, we need not wait to
see the codewords that come later.

• Therefore, another name for “prefix code” is instantaneous code.

Example 2.25. The codes used in Example 2.12 (Example 2.23) and Ex-
ample 2.22 are prefix codes and hence they are uniquely decodable.

2.26. The nesting relationship among all the types of source codes is shown
in Figure 2. Classes of codes

1

All codes

Nonsingular codes

UD codes

Prefix

codes

Figure 2: Classes of codes
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Example 2.27.

x Codeword c(x)

1 1
2 10
3 100
4 1000

Try to decode 10010001110100111

Example 2.28. [5, p 106–107]

x Codeword c(x)

1 10
2 00
3 11
4 110

This code is not a prefix code because codeword “11” is a prefix of code-
word “110”.

This code is uniquely decodable. To see that it is uniquely decodable,
take any code string and start from the beginning.

• If the first two bits are 00 or 10, they can be decoded immediately.

• If the first two bits are 11, we must look at the following bit(s).

◦ If the next bit is a 1, the first source symbol is a 3.

◦ If the next bit is a 0, we need to count how many 0s are there
before 1 shows up again.

◦ If the length of the string of 0’s immediately following the 11 is
even, the first source symbol is a 3.

◦ If the length of the string of 0’s immediately following the 11 is
odd, the first codeword must be 110 and the first source symbol
must be 4.

By repeating this argument, we can see that this code is uniquely decodable.

16



 Sirindhorn International Institute of Technology 

Thammasat University 

School of Information, Computer and Communication Technology 

 

 

ECS452 2018/2 Part I.2 Dr.Prapun
2.29. For our present purposes, a better code is one that is uniquely de-

codable and has a shorter expected length than other uniquely decodable
codes. We do not consider other issues of encoding/decoding complexity or
of the relative advantages of block codes or variable length codes. [6, p 57]

2.2 Optimal Source Coding: Huffman Coding

In this section we describe a very popular source coding algorithm called
the Huffman coding.

Definition 2.30. Given a source with known probabilities of occurrence
for symbols in its alphabet, to construct a binary Huffman code, create a
binary tree by repeatedly combining8 the probabilities of the two least likely
symbols.

• Developed by David Huffman as part of a class assignment9.
8The Huffman algorithm performs repeated source reduction [6, p 63]:

• At each step, two source symbols are combined into a new symbol, having a probability that is the
sum of the probabilities of the two symbols being replaced, and the new reduced source now has
one fewer symbol.

• At each step, the two symbols to combine into a new symbol have the two lowest probabilities.

◦ If there are more than two such symbols, select any two.

9The class was the first ever in the area of information theory and was taught by Robert Fano at MIT
in 1951.

◦ Huffman wrote a term paper in lieu of taking a final examination.

◦ It should be noted that in the late 1940s, Fano himself (and independently, also Claude Shannon)
had developed a similar, but suboptimal, algorithm known today as the ShannonFano method. The
difference between the two algorithms is that the ShannonFano code tree is built from the top down,
while the Huffman code tree is constructed from the bottom up.
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• By construction, Huffman code is a prefix code.

Example 2.31.

x pX(x) Codeword c(x) `(x)

A 0.5
B 0.25
C 0.125
D 0.125

E [`(X)] =

Note that for this particular example, the values of 2`(x) from the Huffman
encoding is inversely proportional to pX(x):

pX(x) =
1

2`(x)
.

In other words,

`(x) = log2

1

pX(x)
= − log2(pX(x)).

Therefore,

E [`(X)] =
∑
x

pX(x)`(x) =

Example 2.32.

x pX(x) Codeword c(x) `(x)

‘a’ 0.4
‘b’ 0.3
‘c’ 0.1
‘d’ 0.1
‘e’ 0.06
‘f’ 0.04

E [`(X)] =
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Example 2.33.

x pX(x) Codeword c(x) `(x)

1 0.25
2 0.25
3 0.2
4 0.15
5 0.15

E [`(X)] =

Example 2.34.

x pX(x) Codeword c(x) `(x)

1/3
1/3
1/4
1/12

E [`(X)] =

x pX(x) Codeword c(x) `(x)

1/3
1/3
1/4
1/12

E [`(X)] =

2.35. The set of codeword lengths for Huffman encoding is not unique.
There may be more than one set of lengths but all of them will give the
same value of expected length.

Definition 2.36. A code is optimal for a given source (with known pmf) if
it is uniquely decodable and its corresponding expected length is the shortest
among all possible uniquely decodable codes for that source.

2.37. The Huffman code is optimal.
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2.3 Source Extension (Extension Coding)

2.38. One can usually (not always) do better in terms of expected length
(per source symbol) by encoding blocks of several source symbols.

Definition 2.39. In, an n-th extension coding, n successive source sym-
bols are grouped into blocks and the encoder operates on the blocks rather
than on individual symbols. [4, p. 777]

Example 2.40.

x pX(x) Codeword c(x) `(x)

Y(es) 0.9
N(o) 0.1

(a) First-order extension:

E [`(X)] =

YNNYYYNYYNNN...

(b) Second-order Extension:

x1x2 pX1,X2
(x1, x2) c(x1, x2) `(x1, x2)

YY
YN
NY
NN

E [`(X1, X2)] =

(c) Third-order Extension:

x1x2x3 pX1,X2,X3
(x1, x2, x3) c(x1, x2, x3) `(x1, x2, x3)

YYY
YYN
YNY

...

E [`(X1, X2, X3)] =

20
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2.4 (Shannon) Entropy for Discrete Random Variables

Entropy is a measure of uncertainty of a random variable [5, p 13].

It arises as the answer to a number of natural questions. One such
question that will be important for us is “What is the average length of the
shortest description of the random variable?”

Definition 2.41. The entropy H(X) of a discrete random variable X is
defined by

H (X) = −
∑
x∈SX

pX (x) log2 pX (x) = −E [log2 pX (X)] .

• The log is to the base 2 and entropy is expressed in bits (per symbol).

◦ The base of the logarithm used in defining H can be chosen to be
any convenient real number b > 1 but if b 6= 2 the unit will not be
in bits.

◦ If the base of the logarithm is e, the entropy is measured in nats.

◦ Unless otherwise specified, base 2 is our default base.

• Based on continuity arguments, we shall assume that 0 ln 0 = 0.
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Example 2.42. The entropy of the random variable X in Example 2.31 is
1.75 bits (per symbol).

Example 2.43. The entropy of a fair coin toss is 1 bit (per toss).

2.44. Note that entropy is a functional of the (unordered) probabilities
from the pmf of X. It does not depend on the actual values taken by
the random variable X, Therefore, sometimes, we write H(pX) instead of
H(X) to emphasize this fact. Moreover, because we use only the probability
values, we can use the row vector representation p of the pmf pX and simply
express the entropy as H(p).

In MATLAB, to calculate H(X), we may define a row vector pX from
the pmf pX . Then, the value of the entropy is given by

HX = -pX*(log2(pX))’.

Example 2.45. The entropy of a uniform (discrete) random variable X on
{1, 2, 3, . . . , n}:

Example 2.46. The entropy of a Bernoulli random variable X:
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Definition 2.47. Binary Entropy Function : We define hb(p), h (p) or
H(p) to be −p log2 p− (1− p) log2 (1− p), whose plot is shown in Figure 3.
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Entropy for two random variables 

• For two random variables X and Y with a joint pmf ( ),p x y  and marginal pmf  p(x) and p(y). 

Figure 3: Binary Entropy Function

2.48. Two important facts about entropy:

(a) H (X) ≤ log2 |SX | with equality if and only if X is a uniform random
variable.

(b) H (X) ≥ 0 with equality if and only if X is not random.

In summary,

0
deterministic

≤ H (X) ≤ log2 |SX |
uniform

.

Theorem 2.49. The expected length E [`(X)] of any uniquely decodable
binary code for a random variable X is greater than or equal to the entropy
H(X); that is,

E [`(X)] ≥ H(X)

with equality if and only if 2−`(x) = pX(x). [5, Thm. 5.3.1]

Definition 2.50. Let L(c,X) be the expected codeword length when ran-
dom variable X is encoded by code c.

Let L∗(X) be the minimum possible expected codeword length when
random variable X is encoded by a uniquely decodable code c:

L∗(X) = min
UD c

L(c,X).
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2.51. Given a random variable X, let cHuffman be the Huffman code for this
X. Then, from the optimality of Huffman code mentioned in 2.37,

L∗(X) = L(cHuffman, X).

Theorem 2.52. The optimal code for a random variable X has an expected
length less than H(X) + 1:

L∗(X) < H(X) + 1.

2.53. Combining Theorem 2.49 and Theorem 2.52, we have

H(X) ≤ L∗(X) < H(X) + 1. (3)

Definition 2.54. Let L∗n(X) be the minimum expected codeword length
per symbol when the random variable X is encoded with n-th extension
uniquely decodable coding. Of course, this can be achieve by using n-th
extension Huffman coding.

2.55. An extension of (3):

H(X) ≤ L∗n(X) < H(X) +
1

n
. (4)

In particular,
lim
n→∞

L∗n(X) = H(X).

In otherwords, by using large block length, we can achieve an expected
length per source symbol that is arbitrarily close to the value of the entropy.

2.56. Operational meaning of entropy: Entropy of a random variable is the
average length of its shortest description.
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